Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.947
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10582, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719932

RESUMO

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Assuntos
Neoplasias do Colo , Quinases Ciclina-Dependentes , Fluoruracila , Tromboplastina , Regulação para Cima , Humanos , Tromboplastina/metabolismo , Tromboplastina/genética , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Regulação para Cima/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Compostos de Piridínio/farmacologia , Óxidos N-Cíclicos/farmacologia , Indolizinas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos
2.
Clin Transl Med ; 14(5): e1678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736108

RESUMO

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Assuntos
Quinases Ciclina-Dependentes , Ferroptose , Neoplasias de Próstata Resistentes à Castração , Masculino , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Ferroptose/genética , Humanos , Camundongos , Animais , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Progressão da Doença , Linhagem Celular Tumoral
3.
J Med Chem ; 67(8): 6099-6118, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38586950

RESUMO

The duality of function (cell cycle regulation and gene transcription) of cyclin-dependent kinase 7 (CDK7) makes it an attractive oncology target and the discovery of CDK7 inhibitors has been a long-term pursuit by academia and pharmaceutical companies. However, achieving selective leading compounds is still difficult owing to the similarities among the ATP binding pocket. Herein, we detail the design and synthesis of a series of macrocyclic derivatives with pyrazolo[1,5-a]-1,3,5-triazine core structure as potent and selective CDK7 inhibitors. The diverse manners of macrocyclization led to distinguished selectivity profiles of the CDK family. Molecular dynamics (MD) simulation explained the binding difference between 15- and 16-membered macrocyclic compounds. Further optimization generated compound 37 exhibiting good CDK7 inhibitory activity and high selectivity over other CDKs. This work clearly demonstrated macrocyclization is a versatile method to finely tune the selectivity profile of small molecules and MD simulation can be a valuable tool in prioritizing designs of the macrocycle.


Assuntos
Quinases Ciclina-Dependentes , Desenho de Fármacos , Compostos Macrocíclicos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinase Ativadora de Quinase Dependente de Ciclina
4.
Cell Commun Signal ; 22(1): 226, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605321

RESUMO

Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.


Assuntos
Neoplasias da Mama , Quinases Ciclina-Dependentes , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Quinases Ciclina-Dependentes/metabolismo
5.
J Med Chem ; 67(8): 6726-6737, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570733

RESUMO

Cyclin-dependent kinase 19 (CDK19) is overexpressed in prostate cancer, making it an attractive target for both imaging and therapy. Since little is known about the optimized approach for radioligands of nuclear proteins, linker optimization strategies were used to improve pharmacokinetics and tumor absorption, including the adjustment of the length, flexibility/rigidity, and hydrophilicity/lipophilicity of linkers. Molecular docking was conducted for virtual screening and followed by IC50 determination. Both BALB/c mice and P-16 xenografts were used for tissue distribution and PET/CT imaging. The ligand 68Ga-10c demonstrated high absorption in tumor 5 min after injection and sustains long-term imaging within 3 h. Furthermore, 68Ga-10c exhibited slow clearance within the tumor and was predominantly metabolized in both the liver and kidneys, showing the potential to alleviate metabolic pressure and enhance tissue safety. Therefore, the linker optimization strategy is well suited for CDK19 and provides a reference for the radioactive ligands of other nuclear targets.


Assuntos
Quinases Ciclina-Dependentes , Camundongos Endogâmicos BALB C , Animais , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Camundongos , Masculino , Simulação de Acoplamento Molecular , Desenho de Fármacos , Distribuição Tecidual , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral
6.
J Clin Invest ; 134(10)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546787

RESUMO

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Assuntos
Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Neoplasias de Próstata Resistentes à Castração , Inibidores de Proteínas Quinases , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Animais , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Camundongos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
7.
Chem Biol Interact ; 393: 110940, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38467339

RESUMO

Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Ciclinas/uso terapêutico , Neoplasias/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
Sci Rep ; 14(1): 6574, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503865

RESUMO

Cell cycle-dependent protein kinase 12 (CDK12) plays a key role in a variety of carcinogenesis processes and represents a promising therapeutic target for cancer treatment. However, to date, there have been no systematic studies addressing its diagnostic, prognostic and immunological value across cancers. Here, we found that CDK12 was significantly upregulated in various types of cancers, and it expression increased with progression in ten cancer types, including breast cancer, cholangiocarcinoma and colon adenocarcinoma. Moreover, the ROC curves indicated that CDK12 showed diagnostic value in eight cancer types. High CDK12 expression was associated with poor prognosis in eight types of cancer, including low-grade glioma, mesothelioma, melanoma and pancreatic cancer. Furthermore, we conducted immunoassays to explore the exact mechanisms underlying CDK12-induced carcinogenesis, which revealed that increased expression of CDK12 allowed tumours to evade immune surveillance and upregulate immune checkpoint genes. Additionally, mutational studies have shown that amplification and missense mutations are the predominant mutational events affecting CDK12 across cancers. These findings establish CDK12 as a significant biological indicator of cancer diagnosis, prognosis, and immunotherapeutic targeting. Early surveillance and employment of CDK12 inhibitors, along with concomitant immunotherapy interventions, may enhance the clinical outcomes of cancer patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Proteínas Quinases , Quinases Ciclina-Dependentes/metabolismo , Prognóstico , Carcinogênese , Biomarcadores Tumorais/metabolismo , Imunomodulação/genética
9.
J Exp Clin Cancer Res ; 43(1): 89, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520004

RESUMO

BACKGROUND: The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS: The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS: CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS: Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Fatores de Transcrição , Linfócitos T CD8-Positivos/metabolismo , Antígeno B7-H1/metabolismo , Radioimunoterapia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Proteínas do Tecido Nervoso/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteína 1 de Ligação a Y-Box
10.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467320

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Assuntos
Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígeno Ki-67/metabolismo , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinases Ciclina-Dependentes/uso terapêutico , Ciclofosfamida/farmacologia , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Transaminases , Glutamatos/farmacologia , Glutamatos/uso terapêutico , RNA Mensageiro
11.
Br J Cancer ; 130(8): 1239-1248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355840

RESUMO

BACKGROUND: Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS: In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS: Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION: CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina
12.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38393314

RESUMO

The expression of cyclin proteins is tightly regulated during the cell cycle, to allow precise activation of cyclin-dependent kinases. In this issue, Pan et al. (https://doi.org/10.1083/jcb.202308066) identify an RNA-binding protein, PC4, as a regulator of cyclin D1 mRNA stability in hepatocellular carcinoma cells. This study provides a new mechanism regulating the levels of a key cell cycle protein, cyclin D1, in human cells.


Assuntos
Ciclina D1 , Proteínas de Ligação a DNA , Estabilidade de RNA , Fatores de Transcrição , Humanos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral
13.
BMC Plant Biol ; 24(1): 157, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424498

RESUMO

BACKGROUND: D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS: We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS: The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.


Assuntos
Ciclinas , Oryza , Ciclinas/genética , Ciclinas/metabolismo , Oryza/genética , Oryza/metabolismo , Fosforilação , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclo Celular/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Mitose
14.
Clin Cancer Res ; 30(9): 1889-1905, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381406

RESUMO

PURPOSE: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN: We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS: We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS: Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.


Assuntos
Apoptose , Neoplasias da Mama , Ciclo Celular , Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-myc , Receptores de Estrogênio , Transdução de Sinais , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos , Animais , Camundongos , Receptores de Estrogênio/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Sistemas CRISPR-Cas
15.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206091

RESUMO

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Animais , Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Mitose , Proteínas Cdc20/metabolismo , Mamíferos/metabolismo
16.
Cancer Sci ; 115(3): 937-953, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38186218

RESUMO

L-type amino acid transporter 1 (LAT1, SLC7A5) is an amino acid transporter expressed in various carcinomas, and it is postulated to play an important role in the proliferation of cancer cells through the uptake of essential amino acids. Cabazitaxel is a widely used anticancer drug for treating castration-resistant prostate cancer (CRPC); however, its effectiveness is lost when cancer cells acquire drug resistance. In this study, we investigated the expression of LAT1 and the effects of a LAT1-specific inhibitor, JPH203, in cabazitaxel-resistant prostate cancer cells. LAT1 was more highly expressed in the cabazitaxel-resistant strains than in the normal strains. Administration of JPH203 inhibited the growth, migration, and invasive ability of cabazitaxel-resistant strains in vitro. Phosphoproteomics using liquid chromatography-mass spectrometry to comprehensively investigate changes in phosphorylation due to JPH203 administration revealed that cell cycle-related pathways were affected by JPH203, and that JPH203 significantly reduced the kinase activity of cyclin-dependent kinases 1 and 2. Moreover, JPH203 inhibited the proliferation of cabazitaxel-resistant cells in vivo. Taken together, the present study results suggest that LAT1 might be a valuable therapeutic target in cabazitaxel-resistant prostate cancer.


Assuntos
Benzoxazóis , Transportador 1 de Aminoácidos Neutros Grandes , Neoplasias da Próstata , Taxoides , Tirosina/análogos & derivados , Masculino , Humanos , Fosforilação , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Quinases Ciclina-Dependentes/metabolismo , Linhagem Celular Tumoral
17.
J Pharm Pharmacol ; 76(2): 93-105, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085101

RESUMO

OBJECTIVES: Cyclin-dependent kinase inhibitors are subject to rapid first-pass metabolism, and their oral absorption is hindered by intestinal CYP3A4 and P-gp. The present study investigates the impact of dietary polyphenols on the oral pharmacokinetics of palbociclib and ribociclib, considering their potential as modulators of CYP3A4 and P-gp. METHODS: Therefore, potential inhibitory effects of dietary polyphenols on drug metabolism and efflux of these drugs were investigated using molecular docking; in vitro preclinical assay using rat liver microsomes and Caco-2 cell monolayers; in vivo, pharmacokinetic parameters were determined in rats pretreated with dietary polyphenols. KEY FINDINGS: Curcumin and quercetin have the highest binding affinities to the PXR's AF-2 region cluster. Curcumin and quercetin significantly inhibited both intestinal efflux and CYP3A4-mediated metabolism of palbociclib and ribociclib (P < .05). In rats pretreated with curcumin, Cmax of palbociclib exhibited a 5.13% increase, while the AUC0-24h of ribociclib showed a significant increase of 18.83% (P < .05). Quercetin administration, notably, impedes the pharmacokinetics of palbociclib. However, the pharmacokinetics of ribociclib remains unaffected by quercetin. CONCLUSIONS: In conclusion, the utilization of curcumin as a bioenhancer can enhance the bioavailability of dual substrates of P-gp and CYP3A4.


Assuntos
Aminopiridinas , Curcumina , Citocromo P-450 CYP3A , Purinas , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Células CACO-2 , Curcumina/farmacologia , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Quinases Ciclina-Dependentes/metabolismo
18.
Gastroenterology ; 166(2): 284-297.e11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734420

RESUMO

BACKGROUND & AIMS: T cells are crucial for the antitumor response against colorectal cancer (CRC). T-cell reactivity to CRC is nevertheless limited by T-cell exhaustion. However, molecular mechanisms regulating T-cell exhaustion are only poorly understood. METHODS: We investigated the functional role of cyclin-dependent kinase 1a (Cdkn1a or p21) in cluster of differentiation (CD) 4+ T cells using murine CRC models. Furthermore, we evaluated the expression of p21 in patients with stage I to IV CRC. In vitro coculture models were used to understand the effector function of p21-deficient CD4+ T cells. RESULTS: We observed that the activation of cell cycle regulator p21 is crucial for CD4+ T-cell cytotoxic function and that p21 deficiency in type 1 helper T cells (Th1) leads to increased tumor growth in murine CRC. Similarly, low p21 expression in CD4+ T cells infiltrated into tumors of CRC patients is associated with reduced cancer-related survival. In mouse models of CRC, p21-deficient Th1 cells show signs of exhaustion, where an accumulation of effector/effector memory T cells and CD27/CD28 loss are predominant. Immune reconstitution of tumor-bearing Rag1-/- mice using ex vivo-treated p21-deficient T cells with palbociclib, an inhibitor of cyclin-dependent kinase 4/6, restored cytotoxic function and prevented exhaustion of p21-deficient CD4+ T cells as a possible concept for future immunotherapy of human disease. CONCLUSIONS: Our data reveal the importance of p21 in controlling the cell cycle and preventing exhaustion of Th1 cells. Furthermore, we unveil the therapeutic potential of cyclin-dependent kinase inhibitors such as palbociclib to reduce T-cell exhaustion for future treatment of patients with colorectal cancer.


Assuntos
Neoplasias Colorretais , Células Th1 , Humanos , Animais , Camundongos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Imunidade , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/metabolismo
19.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099650

RESUMO

Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.


Ribosomes are cell structures within a compartment called the nucleolus that are required to make proteins, which are essential for cell function. Due to their uncontrolled growth and division, cancer cells require many proteins and therefore have a particularly high demand for ribosomes. Due to this, some anti-cancer drugs deliberately target the activities of the nucleolus. However, it was not clear if anti-cancer drugs with other targets also disrupt the nucleolus, which may result in side effects. Previously, it had been difficult to study how nucleoli work, partly because in human cells they vary naturally in shape, size, and number. Potapova et al. used fluorescent microscopy to develop a new way of assessing nucleoli based on the location and ratio of certain proteins. These measurements were used to calculate a "nucleolar normality score". Potapova et al. then tested over a thousand anti-cancer drugs in healthy and cancerous human cells. Around 10% of the tested drugs changed the nucleolar normality score when compared to placebo treatment, indicating that they caused nucleolar stress. For most of these drugs, the nucleolus was not the intended target, suggesting that disrupting it was an unintended side effect. Drugs inhibiting proteins called cyclin-dependent kinases caused the most drastic changes in the size and shape of nucleoli, disrupting them completely. These kinases are known to be involved in activating enzymes required for general transcription. Potapova et al. showed that they also are involved in production of ribosomal RNA, revealing an additional role in coordinating ribosome assembly. Taken together, the findings suggest that evaluating the effect of new anti-cancer drugs on the nucleolus could help to develop future treatments with less toxic side effects. The experiments also reveal new avenues for researching how cyclin-dependent kinases control the production of RNA more generally.


Assuntos
Antineoplásicos , Nucléolo Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ribossomos/metabolismo , RNA Polimerase I/metabolismo , Quinases Ciclina-Dependentes/metabolismo , RNA Polimerase II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , RNA/metabolismo
20.
PeerJ ; 11: e16683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130926

RESUMO

Background: Thapsigargin (Tg) is a compound that inhibits the SERCA calcium transporter leading to decreased endoplasmic reticulum (ER) Ca2+ levels. Many ER chaperones are required for proper folding of membrane-associated and secreted proteins, and they are Ca2+ dependent. Therefore, Tg leads to the accumulation of misfolded proteins in the ER, activating the unfolded protein response (UPR) to help restore homeostasis. Tg reportedly induces cell cycle arrest and apoptosis in many cell types but how these changes are linked to the UPR remains unclear. The activating transcription factor 4 (ATF4) plays a key role in regulating ER stress-induced gene expression so we sought to determine if ATF4 is required for Tg-induced cell cycle arrest and apoptosis using ATF4-deficient cells. Methods: Two-parameter flow cytometric analysis of DNA replication and DNA content was used to assess the effects of Tg on cell cycle distribution in isogenic HCT116-derived cell lines either expressing or lacking ATF4. For comparison, we similarly assessed the Tg response in isogenic cell lines deleted of the p53 tumour suppressor and the p53-regulated p21WAF1 cyclin-dependent kinase inhibitor important in G1 and G2 arrests induced by DNA damage. Results: Tg led to a large depletion of the S phase population with a prominent increase in the proportion of HCT116 cells in the G1 phase of the cell cycle. Importantly, this effect was largely independent of ATF4. We found that loss of p21WAF1 but not p53 permitted Tg treated cells to enter S phase and synthesize DNA. Therefore, p21WAF1plays an important role in these Tg-induced cell cycle alterations while ATF4 and p53 do not. Remarkably, the ATF4-, p53-and p21WAF1-deficient cell lines were all more sensitive to Tg-induced apoptosis. Taken together, p21WAF1 plays a larger role in regulating Tg-induced G1 and G2 arrests than ATF4 or p53 but these proteins similarly contribute to protection from Tg-induced apoptosis. This work highlights the complex network of stress responses that are activated in response to ER stress.


Assuntos
Fator 4 Ativador da Transcrição , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Tapsigargina/farmacologia , Fator 4 Ativador da Transcrição/genética , Linhagem Celular Tumoral , DNA , Quinases Ciclina-Dependentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA